All posts by idbeditor

RM016 Pink Gneiss

Class: 5D Name: Cheung Pak Tung Year: 2017 – 2018   地質年代:(化石) (岩石) 化學組成, 鍵及結構:(礦物) 對於淺色帶,岩石通常包含長石礦物(長石,斜長石)和石英等長英質礦物。   對於深色帶,它主要含有黑雲母,輝石(輝石)和角閃石(角閃石)等基性礦物, Geological Age: (Fossil) (Rock) Chemical composition, bonding and structure: (Mineral) For the light coloured bands, the rocks usually contain felsic minerals such as feldspar (orthoclase, plagioclase) and quartz.   For the dark coloured bands, it mostly contains mafic minerals such as biotite, pyroxene (augite) and amphibole ( hornblende) 形成:(岩石) (礦物) 片麻岩通常由匯聚板塊邊界的區域變質作用形成。 它是一種高品位的變質岩石,礦物顆粒在強熱和高壓下發生再結晶。 這種改變增加了礦物顆粒的大小,並將它們分離成帶狀物,這種變化使岩石及其礦物在變質環境中更加穩定。   Formation:(Rock) (Mineral) It is formed by regional metamorphism at convergent plate boundaries. As…

Read More »

RM015 Phyllite

Class: 5D 04 Name: Cheung Cheuk Nam Year: 2017 – 2018   化學組成, 鍵及結構:       Chemical composition, bonding and structure: (Mineral)     形成: 它通過重建細粒狀的母體沉積岩而形成,如泥岩或頁岩。 原生物:(化石) Formation: It formed by the reconstitution of fine-grained, parent sedimentary rocks,such as mudstones or shales. Living Specimens: (Fossil) 特性: 千枚岩具有比石板更大的晶體。令它有更大程度的光線反射或光澤。板岩通常無光澤且不反光。光澤用於區分板岩與千枚岩。 Properties: Phyllite has larger crystals than slate. This gives it a greater degree of light reflection or sheen. Slate is usually dull and non reflective.The sheen is used to distinguish phyllite from slate. 用途: 千枚岩在住宅建築行業已有許多用途。因為它的質量,他們可以以不同的方式,以滿足大多數現代建築發展的需求和趨勢。它的質感和外觀使其很適合現代設計。例如酒店大堂,學校,博物館內部的地板磚   Application:…

Read More »

RM013 Metaquartzite

Class: 5E Name: Tso Chak Hin Year: 2017 – 2018   地質年代:公元前七千年 Geological Age: 7th millennium BC 形成:青金石是由接觸交代變質作用形成,主要賦存於矽酸鹽 – 鎂質矽卡岩中和鈣質矽卡岩中     Formation: Lapis Lazuli is formed by contact metamorphism and occurs mainly in silicate-magnesian skarns and in calcareous skarns.     特性:青金石,多礦物集合體。青金石礦物的化學成分為鈉鈣的鋁矽酸鹽,其化學式為(Na,Ca)8(AlSiO4)6(SO4,S,Cl)2,常呈緻密塊狀集合體,單晶為菱形十二面體,但極為罕見,顏色為深藍色、天藍色、紫藍色和綠藍色,摩氏硬度5-5.5,相對密度2.38~2.45。   Properties: Lapis Lazuli,a multi-mineral assemblage.Lapis Lazuli minerals are dominant, and the chemical composition of lapis lazuli minerals is sodium calcium silicate, whose chemical formula is (Na,Ca)8(AlSiO4)6(SO4,S,Cl)2, and often shows a dense block. Assemblies, single crystal diamond-shaped dodecahedron, but very rare, the…

Read More »

RM012 Lapis Lazuli

Class: 5E Name: Tam Chor Yi Year: 2017 – 2018   地質年代:公元前七千年 Geological Age: 7th millennium BC 形成:青金石是由接觸交代變質作用形成,主要賦存於矽酸鹽 – 鎂質矽卡岩中和鈣質矽卡岩中     Formation: Lapis Lazuli is formed by contact metamorphism and occurs mainly in silicate-magnesian skarns and in calcareous skarns.     特性:青金石,多礦物集合體。青金石礦物的化學成分為鈉鈣的鋁矽酸鹽,其化學式為(Na,Ca)8(AlSiO4)6(SO4,S,Cl)2,常呈緻密塊狀集合體,單晶為菱形十二面體,但極為罕見,顏色為深藍色、天藍色、紫藍色和綠藍色,摩氏硬度5-5.5,相對密度2.38~2.45。   Properties: Lapis Lazuli,a multi-mineral assemblage.Lapis Lazuli minerals are dominant, and the chemical composition of lapis lazuli minerals is sodium calcium silicate, whose chemical formula is (Na,Ca)8(AlSiO4)6(SO4,S,Cl)2, and often shows a dense block. Assemblies, single crystal diamond-shaped dodecahedron, but very rare, the…

Read More »

RM011 Red Stone

Class: 5E Name: Kwok Chin Wa Year: 2017 – 2018   地質年代:(化石) (岩石) 化學組成, 鍵及結構:(礦物) 礦石     Geological Age: (Fossil) (Rock) Chemical composition, bonding and structure: (Mineral) 礦石   形成:(岩石) (礦物) 原生物:(化石) 紅河石產於紅水河的下游,此石的產地很狹窄。當紅水河流經此地時,由於受到長達幾公里的暗礁阻擊,長年累月暗礁右側便衝出一條很深的河道,暗礁的左側,則形成一條三百多米長的回水灣,紅河石就臥躺在這條回水灣中。這是由於地殼的變化,河灘上青色的岩層被擠壓出條條裂紋。雨季到來,大水淹沒暗礁,把河灘上這些帶有裂紋的青石頭一塊塊地衝進了水灣。由於特殊的地理位置置,回水灣中便積存了許多這樣的石塊。 Formation:(Rock) (Mineral) Living Specimens: (Fossil) Red Stone is produced in the lower reaches of Hongshui River. The origin of this stone is very narrow. When the Red River flows through here, due to being blocked by the reef for up to several kilometers, the long side of the reef for many…

Read More »

RM010 Marble(Polished)

Class: 5E Name: Chiu Kong Suet Year: 2017 – 2018   地質年代: (岩石) 阿普安阿爾卑斯山大理石的地質時代一直是一個頗有爭議的話題, Geological Age: (Rock) The geological age of the marbles of the Apuan Alps has been a subject of much dispute, 形成:(岩石) 大多數大理石形成於會聚板塊邊界,大面積地殼暴露於區域變質作用。當熱岩漿體加熱鄰近的石灰岩或白雲巖時,一些大理石也會通過接觸變質作用形成。 在變質作用之前,石灰岩中的方解石通常以化石化石和生物碎屑的形式出現。在變質過程中,這個方解石會再結晶,岩石的質地會發生變化。在石灰石到大理石轉變的早期階段,岩石中的方解石晶體非常小。在一個剛剛破碎的手標本中,隨著變質作用的進行,晶體變大,變得容易識別為方解石的互鎖晶體。再結晶掩蓋了石灰石的原始化石和沈積結構。它也發生在沒有形成葉理的地方,這種葉理通常在由會聚板邊界的定向壓力改變的岩石中發現。 重結晶是石灰石和大理石分離的標誌。已暴露於低變質程度的大理石將具有非常小的方解石晶體。隨著變質作用的進展,晶體變大。隨著變質程度的增加,大理石中的粘土礦物將變成雲母和更複雜的矽酸鹽結構。   Formation:(Rock) Most marble forms at convergent plate boundaries where large areas of Earth’s crust are exposed to regional metamorphism. Some marble also forms by contact metamorphism when a hot magma body heats adjacent limestone or dolostone. Before metamorphism, the calcite in the limestone is often in…

Read More »

RM009 Mica Schist(with large garnet)

Class: 5D (12) Name: Hui Ka Sin Year: 2017 – 2018   地質年代:(化石) (岩石) 化學組成, 鍵及結構:(礦物) Geological Age: (Fossil) (Rock) Chemical composition, bonding and structure: (Mineral) 形成:(岩石) (礦物) 原生物:(化石) 由泥岩、貢岩或凝灰岩等細顆粒岩石經區域變質作用而成,若母岩為砂岩,則通常變質成石英雲母片岩,甚至石英片岩。 Formation:(Rock) (Mineral) Living Specimens: (Fossil) Fine-grained rocks such as mudstone, tribute rock or tuff are formed by regional metamorphism. If the parent rock is sandstone, it is usually metamorphosed into quartz mica schist and even quartz schist. 特性: 有明顯片理構造,主要由雲母類等片狀礦物平行排列而形成,片理常呈波浪狀的灣曲構造,顏色受所含雲母形響。因雲母含量高,常呈絹絲光澤,常順著解面剝離。 深灰色。               Properties: There are obvious schistosomiasis structures, mainly formed…

Read More »

RM007 Glaucophane Schist/Blue Schist

Class: 5D Name: Reese Chan Year: 2017 – 2018   地質年代:(化石) (岩石) N/A 化學組成, 鍵及結構:(礦物) 藍閃石、柘榴子石、綠簾石、石英、白雲母、綠泥石、黑硬綠泥石、榍石和磷灰石等 Geological Age: (Fossil) (Rock) N/A Chemical composition, bonding and structure: (Mineral) Amphibole, sphagnum stone, epidote, quartz, muscovite, chlorite, black hard chlorite, vermiculite and apatite 形成:(岩石) (礦物) 藍閃石片岩是由片岩原岩的低溫高壓(藍片岩相)區域變質作用形成的。 它通過在高壓和低溫下形成類似成分的玄武岩和岩石的變質作用形成,大約相當於深度15至30公里和200至500°C 原生物:(化石) N/A Formation: (Rock) (Mineral) Blueschists are formed by low temperature, high pressure (blueschist facies) regional metamorphism of basaltic protoliths. Blueschist forms by the metamorphism of basalt and rocks with similar composition at high pressures and low temperatures, approximately corresponding to…

Read More »