RI011 Garnet Peridotite

Class: 5E
Name: Natalie Kwan
Year: 2014 – 2015
地質年代:不詳

化學組成, 鍵及結構:(橄欖石和輝石)

不詳

Geological Age: Unknown

Chemical composition, bonding and structure: ( olivine and pyroxene)

Unknown

形成:(火成岩)

原生物:(火成岩)

分層橄欖岩的火成岩沉積物和茂密的橄欖石晶體的機械堆積形態。一些橄欖岩的形式沉澱和收集累積橄欖石和輝石從幔源岩漿,如玄武岩組成。與阿拉斯加型超鎂鐵複合物相關的橄欖岩是可能形成於火山的根區域累加。累積橄欖岩也形成科馬提岩熔岩流。

Formation:( igneous rock)

Living Specimens: (igneous rock)

Layered peridotites are igneous sediments and form by mechanical accumulation of dense olivine crystals. Some peridotite forms by precipitation and collection of cumulate olivine and pyroxene from mantle-derived magmas, such as those of basalt composition. Peridotites associated with Alaskan-type ultramafic complexes are cumulates that probably formed in the root zones of volcanoes. Cumulate peridotites are also formed inkomatiite lava flows.

特性:

許多橄欖岩出現有特徵的紋理。例如,橄欖岩與良好的橄欖石晶體發生主要是由於層的輝長岩複合物。 “阿爾卑斯”橄欖一般有發生由錯誤的折疊山如阿爾卑斯,太平洋沿岸的範圍,並在阿巴拉契亞山麓帶為界或多或少蛇紋石鏡片不規則的晶體。橄欖岩結節不規則等粒狀紋理往往在鹼性玄武岩和金伯利岩管中。一些橄欖,富含角閃石,有岩體的同心層狀結構和形式部分被稱為阿拉斯加型劃超複合物。

Properties:

Many peridotite occurrences have characteristic textures. For example, peridotites with well-formed olivine crystals occur mainly as layers in gabbroic complexes. “Alpine” peridotites generally have irregular crystals that occur as more or less serpentinized lenses bounded by faults in belts of folded mountains such as the Alpines, the Pacific coast ranges, and in the Appalachian piedmont. Peridotite nodules with irregular equigranular textures are often found in alkaline basalts and in kimberlite pipes. Some peridotites, rich in amphibole, have a concentric layered structure and form parts of plutons called Alaskan-type zoned ultramafic complexes.

用途:(火成岩)

根據公佈的2008年11月的一項新研究,橄欖岩可能會被以一種低成本,捕捉和儲存大氣中的二氧化碳,氣候變化,relatedgreenhouse氣體封存的一部分,安全,永久的方法使用。它已經知道,橄欖岩與CO2反應形成固體碳酸鹽狀石灰石或大理石礦物;該研究的結論是,這個過程可以加速一百萬次以上由簡單鑽井和水力壓裂,以允許注入的二氧化碳到地下橄欖岩地層。

Application: (火成岩)

According to a new study released in November 2008,peridotite may potentially be used in a low-cost, safe and permanent method of capturing and storing atmospheric CO2 as part of climate change-relatedgreenhouse gas sequestration. It was already known that peridotite reacts with CO2 to form a solid carbonate-like limestone or marble mineral; and the study concluded that this process can be speeded up a million times or more by simple drilling and hydraulic fracturing to allow injection of the CO2 into the subsurface peridotite formation.

分佈:(火成岩)

橄欖岩是地幔之上約400公里,深度為主導的岩石;下面的深度,橄欖石被轉換為更高的壓力礦物wadsleyite。海洋板塊由最多100公里左右的橄欖岩覆蓋的薄地殼;地殼中,一般約6公里厚,由玄武岩,輝長岩和少量的沉積物。下面的洋殼,橄欖岩“深海橄欖岩”,是在深海海底裂縫的牆壁上找到。

Distribution: (火成岩)

Peridotite is the dominant rock of the Earth’s mantle above a depth of about 400 km; below that depth, olivine is converted to the higher-pressure mineral wadsleyite. Oceanic plates consist of up to about 100 km of peridotite covered by a thin crust; the crust, commonly about 6 km thick, consists of basalt, gabbro, and minor sediments. The peridotite below the ocean crust, “abyssal peridotite,” is found on the walls of rifts in the deep sea floor.